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The permeability of two-dimensional porous media is calculated numerically as 
a function of porosity using the hydrodynamic cellular automata (lattice gas) 
approach. Results are presented for systems with up to 22 million sites 
(8192x2688). For randomly distributed solid obstacles whose macroscopic 
dimensions are much longer than the mean free path of particles in the fluid, the 
permeability ~c varies with porosity e as ~ ~ ( e - 0 . 6 ) / ( 1 - ~ )  for e >0.7. When 
the solid obstacles are much smaller than the mean free path of particles in the 
fluid, i.e., when they form a dust of point objects, then such a relationship no 
longer holds and the permeability is more than an order of magnitude smaller 
than for the former case. The program used for the simulations is discussed and 
a listing is presented in the Appendix which achieved a sustained speed of 185 
million sites updated per second on a single processor of the Cray-YMP. (On 
a Sun Sparc Workstation, the same program ran about 100 times slower.) 
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The last several years have seen convincing evidence that a certain class of 
cellular automata models originally introduced by Frisch, Hasslacher, and 
Pomeau (FHP) (1) can be used for modeling hydrodynamic fluid flow. By 
now the strengths and weaknesses of these models are well known and 
have been discussed in detail by many researchers. (2) One area in which 
these models should be particularly useful is that of fluid flow involving 
complicated geometries at low Reynolds number. (3) In fact, Brosa has 
recently shown that for flows involving porous membranes, the cellular 
automata approach actually outperforms the traditional finite-element 
methods. (4) In this paper a related problem is studied for which there seems 
to be little progress via traditional methods, namely flow in porous media. 
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Characterizing such flows is important for geologists seeking to understand 
the evolution of sandstone formations as the water drains off, as well as for 
engineers attempting to estimate the oil and gas recovery potential of a 
particular reservoir. (5'6) 

This problem has been studied qualitatively by previous researchers 
using small to modest size lattices. (5'6) In this paper, an attempt is made 
at a more quantitative study with larger lattices. Additionally, a six-bit 
model, (2) i.e., a model without rest particles, is used and shown to yield 
results in agreement with the seven-bit models, (2) i.e., models using rest 
particles. The use of the six-bit model enables one to develop a more 
efficient computer algorithm which is six times faster and able to handle 
lattices eight times larger than the Brosa-Stauffer algorithm. (7) The Fortran 
program used for these studies is given in the Appendix. On a single 
processor of the Cray-YMP/832 it achieved a sustained speed of 185 
million site updates per second (185 Mups) with the porous media in place. 
When running in the multiprocessor batch mode (autotasking), the 
program reached a peak speed of about 800 Mups, depending upon the 
batch environment at the time the job is running. (We did not make any 
studies of performance on a dedicated machine.) This program does not, 
however, require a supercomputer. On a Sun Workstation it runs at about 
1.3 Mups. 

The collision rules used here are those of the original F H P  model, (~ 
supplemented with a set of four-body collisions. Additionally, following 
Brosa and Stauffer, (7) there is an angular momentum bit to ensure local 
conservation of angular momentum. These collision rules are designed to 
avoid spurious conservation laws. 

For  studying flow properties in porous media, the porous material is 
placed in the center half of a pipe. The length of the pipe L in these studies 
is always about three times longer than the width. The porous material is 
generated by randomly placing on the lattice a predetermined number of 
obstacles whose characteristic size is 2% of the lattice length. For 
convenience, the obstacles used in these studies were rhombi. (Duarte and 
Brosa (s~ have previously shown for flow around a single object that the 
precise shape of the object does not significantly affect the results.) In 
placing the rhombi on the lattice, they are allowed to overlap, creating 
highly irregular structures. After all the rhombi have been placed on the 
lattice, the porosity of the medium is calculated as the ratio of the 
unoccupied sites to the total number of sites in the center half of the pipe. 
For random structures this should give a good definition of porosity; 
however, a more sophisticated definition is needed in the case of highly 
structured material. 

For  flow at low Reynolds number, the permeability can be defined as 
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the ratio of the fluid flux through the medium and the pressure difference 
across the medium. The fluid flux in these simulations was measured over 
the last one-eighth of the lattice, while the pressure difference across the 
media can be calculated very simply by measuring the pressure on the walls 
in front of and behind the medium and taking the difference. 

In these simulations the fluid is kept flowing by replacing the first 
column of  the lattice with a new Poiseuille configuration at each time step. 
The new configurat ion was chosen so that  the maximum speed v m in the 
center of the channel was approximately v,,,~0.15. For  all the results 
presented here the density of particles per link, d, is approximately d,~ 0.15, 
which corresponds to a density per site of 0.9. 

Figure 1 shows the results for lattices of various size: 2048 x 640, 
4096 x 1344, and 8192x 2344. For  each configuration of obstacles, the 
system was allowed to equilibrate and then the above described 
measurements  were averaged over the next 20,000 time steps. For  clarity, 
only an estimate of the largest statistical error is shown for the 2048 x 640 
system at a porosi ty of e = 0.93. F r o m  this figure, it can be seen that the 
permeabili ty varies with porosite as ~c oc ( e - e o ) / ( 1 - e )  for ~>0.7.  F r o m  
these data  eo can be estimated as eo~0.6.  These results are in good  
agreement with the data  of Brosa and Stauffer, even though they used 
circular objects and a seven-bit model. (7) 

Now,  it might  be questioned whether it is possible to use point  objects 
instead of solid objects since such a "dust" is much easier to generate on 
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Fig. 1. Plot of the reduced permeability ~c(l ~) versus the porosity ~ at different lattice 
dimensions L x (L/3); the size of the obstacles is taken to be L/50 .  In all cases, the particle 
density is 0.15 particles per link of the lattice, i.e., 0.9 particles per site. 
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SUBROUTINE UPDATE(X1,X2,X3,X4,X5,X6.YI,Y2,Y3,Y4,Y5,Y6, 
ANG,AANG,UB,NOTOB~ 

IMPLICIT NONE 
INTEGER B,L,V H LOB,VMIOB,BMI,HMI 
PARAMETER (B=641L=8192,H=2344,V=L*H,LOB=L/B, 

VMIOB=(V-I)/B,BMI=B-I) 
INTEGER XI<O:VMIOB),X2(O:VMIOB),X3(O:VMISB), 

a X4(O:VMIOB),X5(O:VMIOB),X6(O:VMIOB), 
YI(O:VM1OB),Y2(O:VM1OB),Y3(O:VMIOB), 
Y4(O:VMIOB),Y5(O:VM1OB),Y6(O:VM1OB), 
ANG(O:VMIOB),AANG(O:VMIOB),COL,NCOL, 

a OB(O:VMIOB),NOTOB(O:VMIOB),RULE,A,C,D,E,W 
RULE(A,C,D,E)=(E.AND.OB(W) )+ ( (A.AND.COL.AND.AANG(W) )+ 

a (C.AND.COL.AND.ANG(W) )+(D.AND.NOCL) ) 
C 
* * * * * * * * * * * * * * * * * * * * * * * * * * *  This following loop looks for the 
C collisions and sets the bits for the outgoing particles. 
C 

DO I0 W=O,VMIOB 
NCOL=( ( (XI(W).XOR.X4(W)).OR.(X2(W).XOR.X5(W)).OR. 

(X3(W).XOR.X6(W)) 
.AND.((XI(W).XOR.X3(W)).OR.(X3(W).XOR.X5(W)).OR.) 

(X2(W).XOR.X4(W)).OR.(X4(W).XOR.X6(W)) ) 
).AND.NOTOB(W) 

COL=(.NOT.NCOL).AND.NOTOB(W) 
YI(W)=RULE(X2(W),X61W),XI(W),X4(W)) 
Y2(W)=RULE(X3(W),XI(W),X2(W),X5(W)) 
Y3(W)=RULE(X4(W),X2(W),X3(W),X6(W)) 
Y4(W)=RULE(XS(W),X3(W),X4~W),XI~W)) 
Y5(W)=RULE(X6(W),X4(W~,X5~W),X2(W)) 
Y6(W)=RULE(XI(W),X5(W),X6<W),X3(W)) 
ANG(W)=(COL.AND.AANG(W)).OR.(NCOL.AND.ANG(W)) 

I0 AANG(W)=.NOT.ANG(W) 
C 
* * * * * * * * * * * * * * * * * * * * * * * * * * *  The next loops propagates the particles 
C on the interior sites (the pipe is assumed to have walls at 
C the top and bottom of the lattice) 
C 

DO 20 W=LOB,VMIOB-LOB 
XI(W)=YI(W+LOB-I) 
X2(W)=Y2(W-I) 
X3(W)=Y3(W-LOB) 
X4(W)=Y4(W-LOB+I) 
XS(W)=YS(W+I) 

20 X6(W)=Y6(W+LOB) 
DO 30 W=O,LOB-I 

XI(W)=YI(W+LOB-I) 
30 X6(W)=Y6(W+LOB) 

DO 40 W=VMIOB-LOB+I,VMIOB 
X3(W)=Y3(W-LOB) 

40 X4(W)=Y4(W-LOB+I) 
C 
* * * * * * * * * * * * * * * * * * * * * * * * * * *  Then corrections are made for the left 
C and right edges of the lattice (periodic B.C. are assumed). 
C 

DO 50 W=O,VMIOB-LOB,LOB 
XI(W)=SHIFT(YI(W+2*LOB-I),I) 

50 X2(W)=SHIFT(Y2(W+LOB-I),I) 
DO 60 W=2*LOB-I,VMIOB,LOB 

X4(W)=SHIFT(Y4(W-2*LOB+I),BMI) 
60 XS(W)=SHIFT(Y5(W-LOB+I),BMI) 

RETURN 
END 

Fig. 2. Fortran subroutine for the updating of the lattice. 
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a computer. (9) Simulations with such dust models produced permeabilities 
more than one order of magnitude smaller than those in Fig. 1, even when 
the porosity was as large as e ~0.98. Hence, such dust models are to be 
avoided and obstacle sizes much larger than the mean free path of a 
particle in the fluid should be used. 

In conclusion, hydrodynamic cellular automata on a relatively large 
scale, 22 million sites, have been easily and successfully applied to the 
problem of flow in porous media. The results presented here look 
reasonable and it would be interesting if they could be verified in the real- 
world laboratory. (14) For  further study, a detailed calculation of the object 
size dependence would be of interest as well as a study of how these results 
depend upon the object distribution, i.e., whether the distribution is fractal 
or not. 

A P P E N D I X  

The complete Fortran subroutine which handles the updating of the 
lattice is shown in Fig. 2. The triangular lattice is oriented such that the 
bases of the equilateral triangles lie parallel to the x axis. The lattice 
directions are numbered 1-6 clockwise starting from the upper right-hand 
corner,(7) while the lattice sites are numbered sequentially starting with 0 in 
the upper left-hand corner of the lattice and running from left to right. 
Each new row of the lattice is shifted one shifted one lattice site to the right 
of the previous row, thus forming a large parallelogram. The lattice has L 
sites in the x direction and H sites in the y direction. 

Particles incoming to a site from one of the six directions are stored 
in the one-dimensional arrays X1-X6, and particles outgoing from a site 
are stored in the arrays Y1 Y6. The angular momentum at each site is 
stored in ANG and in its negation AANG. Wether a given site is or is not 
part of an obstacle is stored in OB and NOTOB, respectively. If the 
computer has B bits, then there are B lattice sites stored in each word of 
the arrays. For  example, if, say, the first bit of the first word of X1 is set 
to one, then there is a particle at site number 0, traveling into lattice 
direction number 1. Similarly, if the first bit of the first word of Y1 is set 
to one, then there is a particle at site 0, traveling outward in direction 
number 1. 

The D O - L O O P  ending on statement number 10 examines the X 
vectors for possible collisions at a given site. Collisions occur whenever the 
incoming state consists of two, three, four, or six particles arranged 
symmetrically about the site. If a collision is detected, then the appropriate 
bits designating outgoing particles in the Y vectors are set. Otherwise, the 
particles are simply allowed to propagate onward. The rule for setting the 
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outgoing bits in the presence of a collision is very simple: if the angular 
moment bit A N G  at a site is set to zero, i.e., the corresponding bit in 
A A N G  is set to one, then the outgoing state is obtained from the incoming 
state by X1 ~ Y6, X2 --* Y1, X3 ~ Y2, X4 ~ Y3, X5 --* Y4, X6 --* Y5. If 
the angular momentum bit is set to one, then in the presence of a collision, 
the outgoing state is obtained from the incoming state by X1-- ,X2,  
X2 ~ Y3, X3 ~ Y4, X4 -~ Y5, X5 ~ Y6, X6 ~ Y1. After a collision has 
taken place, the angular momentum bit is flipped to its opposing value. 
Finally, should it happen that the site is an obstacle of some sort, e.g., the 
top or bottom of the pipe, then all of the incoming particles are simply 
reflected back along the direction they came from. This corresponds to 
no-slip boundary conditions. 

Note that the collision rule, defined by the statement function R U L E ,  
has a combination of logical and arithmetic operations. This is possible, 
since I + J  and L O R . J  are interchangeable whenever I and J do not 
simultaneously have corresponding bits set to one. Now, by construction 
this is true for the present collision rule. On a computer like the Cray-YMP 
with separate logical and arithmetic units, this enables several operations 
to be performed simultaneously and yields nearly a 20 % speedup over the 
standard method of not mixing logical and arithmetic operations in a 
single statement. 

After handling the collisions, the program then propagates the 
outgoing particles to the neighboring sites. Now, the sites, although 
numbered consecutively throughout the lattice, are not stored consecutively 
within each word; rather, they are stored across the words as is commonly 
done in statistical mechanics. For  example, site zero is stored in the first bit 
of word one, site one is stored in the first bit of word two, site three in the 
first bit of word three, etc., until the first bit of each of the first L O B  = LIB 
words are used up. The next site then goes into the second bit of the first 
word, etc. This is repeated until the first L O B  words are full. These L O B  
words then contain all the sites of the first row of the lattice. The next L O B  
words will contain the sites of the second row and so on. 

With this method of storing the sites, loops 20, 30, and 40, which 
propagate particles on the interior sites of the lattice, are simple assignment 
statements. If one were to have stored the sites consecutively within 
each word, then the propagation statements would have contained many 
shift and logical operations. The present storage scheme requires shift 
operations only at the left and right boundaries, loops 50 and 60. 

The program presented here bears some resemblances to previous 
program presented by Hayot  et al.(1~ Riccardi et al.,(11) and Gunstensen,(12~ 
but there are important differences, such as the local conservation of 
angular momentum, (7) using one-dimensional arrays, storing the lattice 
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more efficiently, and taking advantage of occasional equivalences between 
arithmetic and logical operat ions which all add up to a large gain in 
computer  speed. As ment ioned previously, this p rogram runs at 185 Mups 
on a single processor of the Cray-YMP,  while the program of Riccardi et 

al. runs at 38 Mups  on a single processor of the ETA10. In the multi- 
processor  batch mode, i.e., autotasking, the program runs at about  
800 Mups,  depending upon  the batch usage at the time the program is 
running. This compares  quite favorably with a speed of 1000 Mups  
obtained on a full, dedicated connect ion machine. To t ransport  the above 
p rogram to a Sun Sparc Workstat ion,  the number  of bits B must  be set to 
B = 32 and the function S H I F T  must  be changed to L S H I F T .  The program 
then runs at 1.3 Mups,  which compares  well with the 32-processor I N T E L  
hypercube,  2.3 Mups,  and the special-purpose machines CAM-6,  4 Mups, 
and ENS,  6.5 Mups  (see ref. 10 and references therein). Even the new RAP 
machine reaching complet ion at ENS is still somewhat  slower (al though 
much cheaper) than one C r a y - Y M P  processor. (13) 
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